Directorate	Location	Date	Status
Connections	Preston	20th Feb 2015	Complete
Operations South	Frederick Rd	26th Feb 2015	Complete
Operations South	Borron St Depot	24th Feb 2015	Complete
Major Projects	Whitegate Depot	27th Feb 2015	Complete
Operations South	Whitegate Depot	27th Feb 2015	Complete
Operations North	Whitebirk Depot	2nd March 2015	Complete
Operations North	Preston	2nd March 2015	Complete
Control Room	Linley House	2nd March 2015	Complete
Operations North	Carlisle	24th Feb 2015	Complete
Operations North	Carlisle	27th Feb 2015	Complete
Secondary Network Design South	Borron St Depot	2nd March 2015	Complete
Operations South	Hilltop Depot	2nd March 2015	Complete
Operations North	Kendal	2nd March 2015	Complete
Operations North	Workington	3rd March 2015	Complete
Estates & Wayleaves	Technology House	4th March 2015	Complete

Operations Briefing

Damien Coyle/Kevin Hoban February – March 2015

Agenda

Connecting the North West

Bringing energy to your door

£12 billion of network assets

56 000 km of network ● 96 bulk supply substations 363 primary substations ● 33 000 transformers

Our smart grid development

Bringing energy to your door

Leading work on developing smart solutions

Customer choice

EXAMPLE A Four flagship products (second tier) £36 million

Smart Street project overview

Project partners

Bringing energy to your door

KELV/TEK

X

The University of Manchester

Smart Street Trials

震

	Two years	Five trial techniques	
	One week off	LV voltage control	
	One year's worth of data	LV network management and interconnection	
To be designed to	HV voltage control		
	avoid placebo affect	HV network management and interconnection	
	Five trial regimes to test full effects	Network configuration and voltage optimisation	

Smart Street trial areas

Existing radial network

囊

Network limitations	Customer impact	
Diversity between feeders is	Customers' needs invisible to the network	
Fuses unable to cope with cold	Demand and generation levels limited by passive voltage control systems	
load pick up	Reliability driven by fix on fail	

Voltage profile

X

ま

賽

Bringing energy to your door

Historic networks have no active voltage regulation

Problem - LCTs create network issues X 豪 Celectricity Bringing energy to your door Drift range A 8

LCTs rapidly surpass voltage and thermal network capacity

Low cost • Quick fit • Minimal disruption • Low carbon • Low loss • Invisible to customers

Voltage stabilised across the load range • Power flows optimised

Bringing energy to your door

Distribution voltage regulated transformer

HV capacitors

Bringing energy to your door

3 ground mounted HV capacitors 3 pole mounted HV capacitors

Secured within GRP housings in urban areas

Installed similar to pole mounted transformers

What customers will see – LV capacitors in street furniture

WEEZAP

World leading LV vacuum circuit breaker

Advanced measurement and protection capability

Safe LV interconnection, live monitoring and control

KELV//TEK

Improves supply reliability and restoration through fault management and detection LYNX

Bringing energy to your door

LV switch

Allows active network meshing and un-meshing

Advanced monitoring capabilities

KELV//TEK

Ability to control the circuit locally or remotely

Technology – Spectrum

Bringing energy to your door

Measures, optimises and responds

CVR and losses benefits unlocked

Oversees network and customer needs

Builds on CLASS smart voltage control

Network reliability improvement

Bringing energy to your door

Celectricity

Builds on C₂C and CLASS • Storage compatible • Transferable solutions

Smart Street benefits

Bringing energy to your door

Now we can stabilise voltage We can set the voltage level lower This will lead to: Reduced demand Reduced customer energy consumption			
Maximised DG output			
How much could customers save?			GB
Reinforcement savings via DUoS		£330 over 25 years	£8.6b over 25 years
Reduced energy consumption, 2013 (from CVR \approx 3 - 7%)		£15 - £30 pa	£390 - £780m pa
Maximise DG output (from maximising Feed In Tariff incom	e)	£70 pa	£20m pa

Efficient network solutions • Energy savings • Carbon benefits

Technology overview

Smart Street summary

Relectricity

A day in the life of Smart Street

• Videos\A day in the life of Smart Street.mp4

QUESTIONS & ANSWERS

Want to know more?

Thank you for your time and attention