

Session 3.3 Voltage Management, LV Modelling and System Control

LCNI Conference Wednesday 12 October 2016 **Celectricity**

Bringing energy to your door

書圖正書合書

Stay connected... **F III III** www.enwl.co.uk

Pelectricity

Bringing energy to your door

書圖書命書

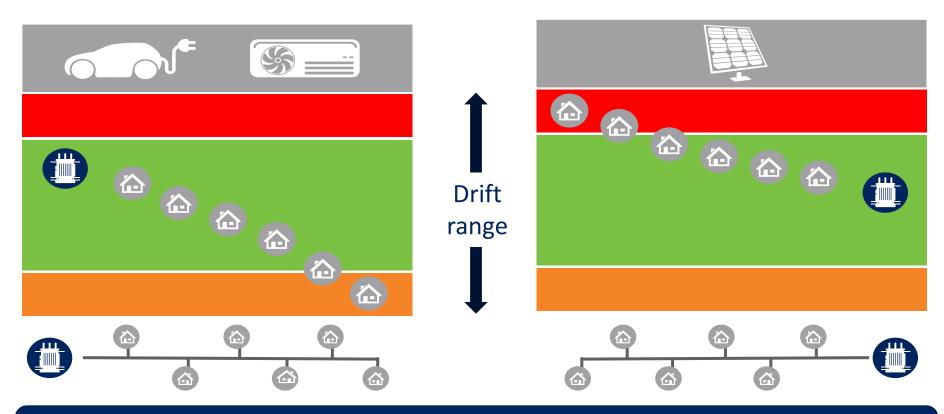

Paul Turner

Innovation Delivery Manager

Stay connected... **F III III** www.enwl.co.uk

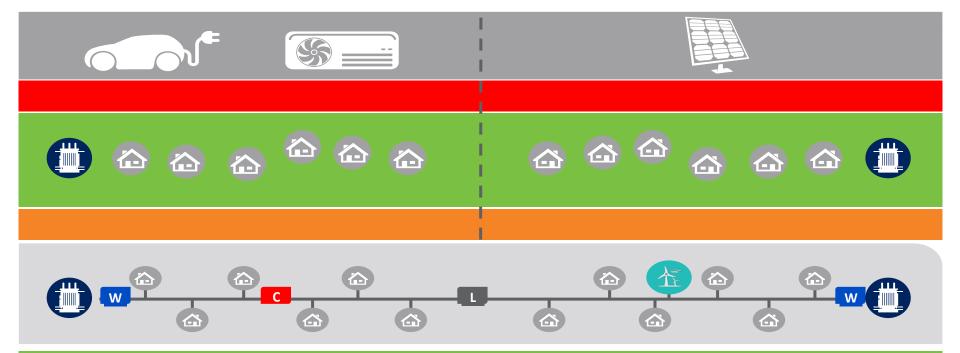
Smart Street project overview

Voltage profile



Historic networks have no active voltage regulation

Problem - LCTs create network issues



LCTs rapidly surpass voltage and thermal network capacity

Smart Street – the first intervention

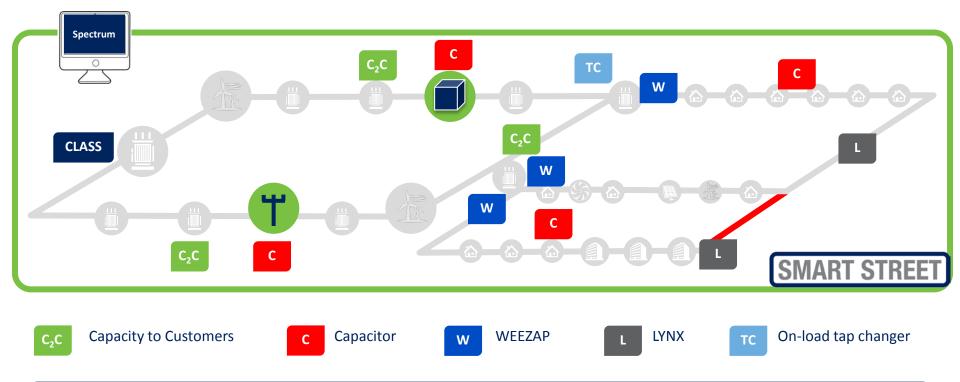
Low cost • Quick fit • Minimal disruption • Low carbon • Low loss • Invisible to customers

Voltage stabilised across the load range • Power flows optimised

The Smart Street System

暈

Spectrum 5 (NMS)



Network reliability improvement

Builds on C₂C and CLASS • Storage compatible • Transferable solutions

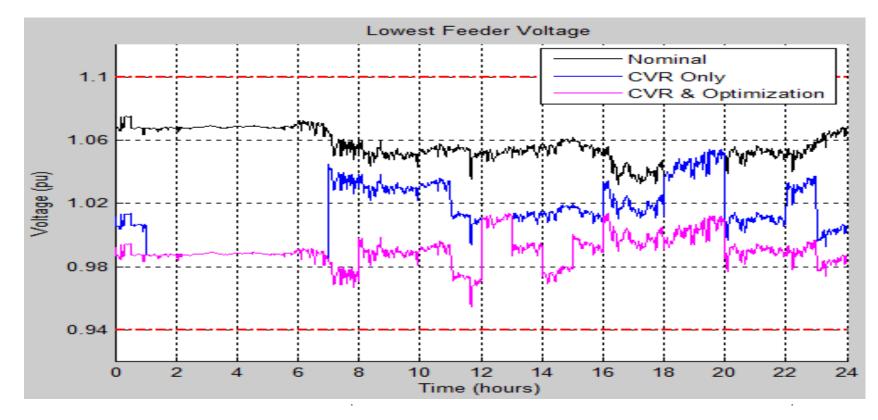
Trials – test regimes

Smart Street trial	Test regime
LV voltage control	1. On-load tap changing distribution transformer only
	2. On-load tap changing distribution transformer and capacitor(s) on LV circuits
	3. Capacitors at distribution substation only
	4. Capacitors at distribution substation and on LV circuits
	5. Capacitor(s) on LV circuits only
LV network management &	1. LV radial circuits
interconnection	2. LV interconnected circuits
	1. Voltage controllers at primary substation only
HV voltage control	2. Voltage controllers at primary substation and capacitor(s) on HV circuits
HV network management &	1. HV radial circuits
interconnection	2. HV interconnected circuits
Network configuration &	1. Losses reduction
voltage optimisation	2. Energy consumption reduction

W/C 14/3/2016	5 14/06/2016 24/06/201			
Successful operation of OLTC and LV capacitor banks	OLTCs only	Use of LV meshing & OLTCs	HV and LV meshing	HV meshed circuits only

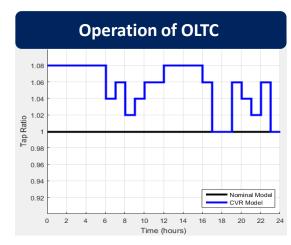
Aims

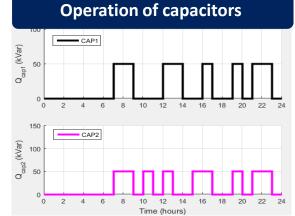
Quantification of CVR benefits


Validation of optimisation techniques

Identify potential power quality and customer side impacts

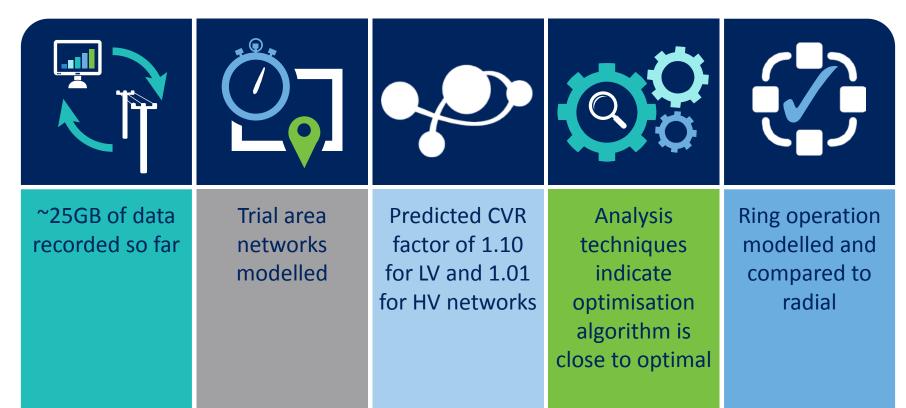
CVR modelling




Graphs taken from UoM research – L Gutierrez/ Y Shen

CVR modelling

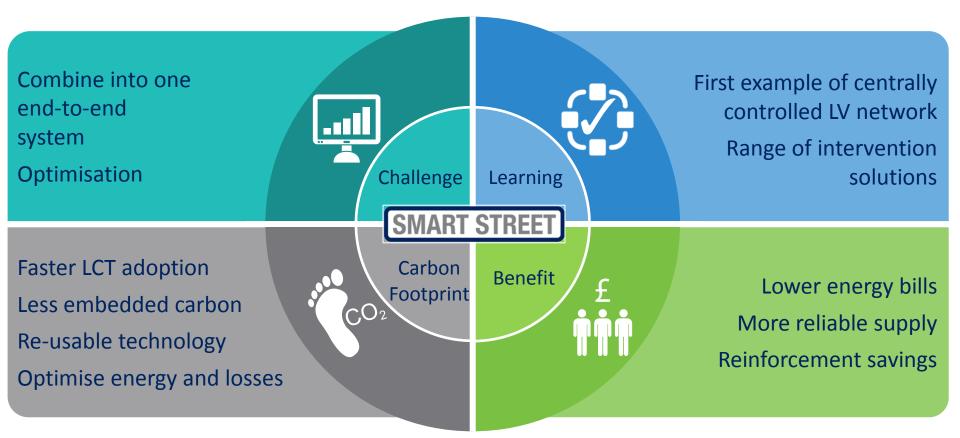
CVR on LV Networks Case study (Brynton Rd 171279)



Result of all LV networks Average voltage reduction = 4.88% Total energy savings = 5.12% Total loss savings = 1.83% CVR factor = 1.10 No voltage problem or overload

Outcomes to date

Still to come



Carbon impact being studied

Analysis of trials data ongoing

Smart Street summary

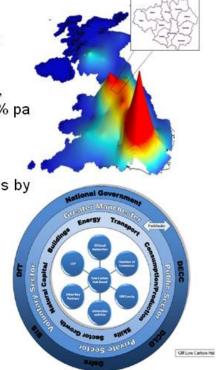
For more information

Smart Community Demonstration Project in Manchester, U.K.

Low Carbon Networks and Innovation Conference Wednesday 12th October, 2016

Mark Atherton Director of Environment, Greater Manchester

Greater Manchester Combined Authority



Greater Manchester (GM)

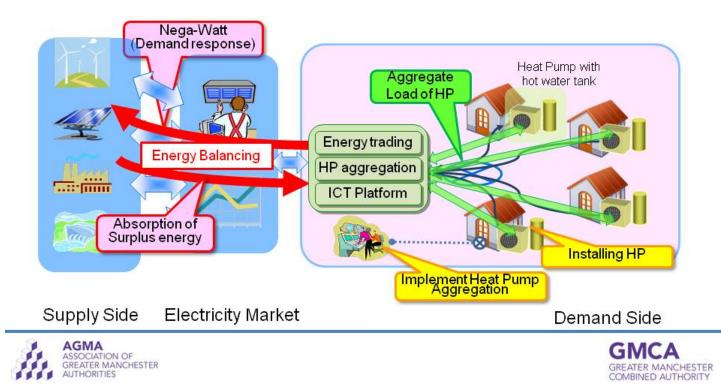
- UK's largest & fastest growing regional economy: GVA £46bn
- 2.6 million residents and a workforce of 7.2 million people
- Low carbon and environmental goods sector worth £5.4 billion, which supports 37,000 jobs - projected to grow at more than 4% pa
- 1.2m households, 25% are social homes
- 95% of homes use gas for space and water heating
- Asset management plan to replace boilers in 160,000 properties by early 2020's

Combined Authority (GMCA)

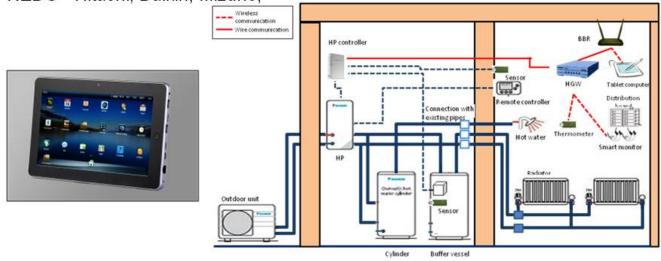
- AGMA established in 1986, GMCA formed in 2011
- 10 Local Authorities of Greater Manchester working at scale
- Established a Low Carbon Hub in 2012
 - A centre of excellence for achieving economic gain through integrated delivery of carbon reduction.

Greater Manchester Energy Demand

	Estimated Required By 2035	Current Domestic demand
Domestic demand	 ▶6GW even with optimal scheduling ▶Domestic ADMD 2kW – 14kW 	profile
Heating	Domestic heat pumps 350 000 fitted 8-10kW for 8 hours Additional >2 GW	12 TV 10 Fridge 8 Lights 4 Washing Machine
Transport	31% UK12M vehicles will be EV/hybrid 720 000 domestic EVs 80 000 E-Vans 3-8kW for 8+ hours. 50kW fast chargers. Additional >2 GW Manchester >400MW	2 Dish washer 0 1 3 5 7 9 11 13 15 17 19 21 23 Domestic demand profile 2025 15
Generation	93% from renewable / carbon neutral sources. Potential for 3,710MW across GM from Heat Pumps	5 0 1 3 5 7 9 11 13 15 17 19 21 23 • Fridge • Lights • Washing Machine • Dish washer



Domestic Smart Energy Proposition


Reduce energy demand and cut carbon emissions by bringing together low carbon energy technologies with advanced IT.

Smart Communities Demonstrator Project

- Develop a Smart Communities Trial MOU signed April 2014
- Combine domestic technologies with a smart network management £20+m
- Trial air source heat pump / demand aggregation in 600 social homes
- GMCA Housing Companies, Electricity Northwest, UK Government Departments
- NEDO Hitachi, Daikin, Mizuho,

Project Objectives, Greater Manchester

Establishment of an aggregation business model which manages energy load of heat pumps in the residential sector

	-			
Ob			1	1
-	-	1.5		3

Aggregation Technology and Systems

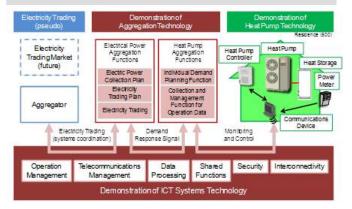
Demonstration of usability and efficiency of load-balancing aggregation technology and systems for residential heat pumps (Daikin, Hitachi)

Business Model

Establishment of Business Model (Mizuho Bank, Daikin, Hitachi)

[UK's Target]

2020: The renewable energy ratio : 15% 2030: Heat Pump penetration: 30%


*Demonstration project supported by METI (Ministry of Economy, Trade and Industry) & NEDO (New Energy and Industrial Technology Development Organization))

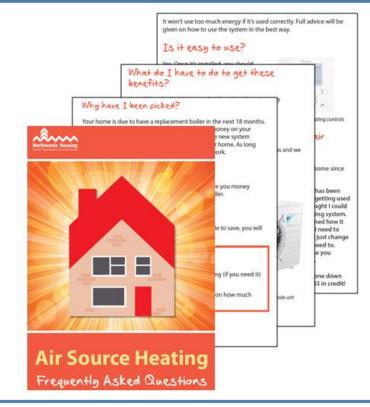
Overview and features of solutions

Overview

Demonstration and Development April 2014 - March 2016

• Installation of heat-pumps (600 houses) • Development of the aggregation system • Establishment of ICT systems • Establishment of Business Model

© Hitachi, Ltd. 2015. All rights reserved.



Hitachi, Ltd.

Key Element: Tenant Engagement

Purpose:

 Recruiting tenants and making the demonstrator a success.

Incentives:

- Free broadband
- Free tablet computer
- Insulation upgrades
- Expert energy advice
- Monitoring equipment
- Telecare function(optional)

Progress and Next Steps

As at October 2016:

- Full aggregation trail commenced (Oct' 16)
- 1740 tenants engaged (Sept '16)
- 631 tenants expressed interest (Oct'16)
- 631 tenants formally signed up
- 550 heat pumps installed (Oct'16)

Next Steps

- Complete heat pump, home gateways and EDMI Meters installations/reinstallation
- Issue User Interface tablets to users
- Commemorative event (Oct' 16)
- Analyse results and develop business case (Feb '17)
- Complete project (Mar'17)

Lessons Learnt

Issues Experienced:

- Perception of ASHPs
 - Increased noise (additional Planning Permission required for blocks of flats)
 - Lower radiator surface temperature*
- Space and layout
 - Larger, impact on room design*
 - Impact of existing furniture*
- Distribution system
 - Homegateway/EDMI firmware issues
- Customer culture / behaviours
 - Tenants unplugging router*
- Perceived increased customer fuel bills in small number of properties
 - Some installation problems*
- Impact on electricity network
 - Long timescale for implementing grid reinforcement work in some properties

Solutions:

- Increased tenant engagement required*
- Increased pilot testing of all new technology before rollout
- Increased technical expertise available on site when first heat pumps installed
- Earlier tenant engagement for planning/reinforcement

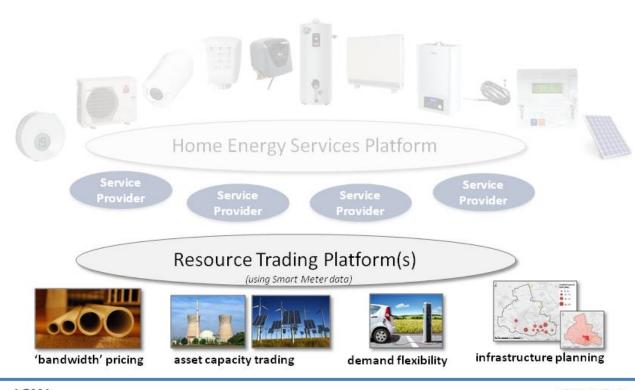
Post Grid Parity: Technology Push to Customer Services Pull

Empower People - data & control ecosystem

Establish clear expectation setting, for both comfort **and** cost Establish the analytics for designing, pricing and targeting services Establish commercial value sharing between actors to align motivation

@2016 Energy Systems Cataputt. All rights reserved.

Stimulate Rapid Innovation In Energy Services



Explore architectures for a services - led supply chain

@2016 Energy Systems Catapult. All rights reserved.

Thank You

