Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Ru	n	
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 1 of 33

Harmonic Measurement Survey Report

at

Dunton Green Filter Run

Report prepared by:

Manjunath R
Senior Applications Engineer
ABB Ltd
Rossmore Road East
Ellesmere Port
CH65 3DD
Tel 0151 357 8400

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 2 of 33

Contents		
Terminology	3	
Harmonic Theory	4	
Introduction	7	
Basic Data	8	
Analyser Configuration	9	
Timeplot - Voltage	10	
Timeplot - Current	11	
Timeplot - Voltage	12	
Timeplot - Active Power kW	13	
Timeplot - Apparent Power kVA	14	
Timeplot - Reactive Power kVAr	15	
Timeplot - Power Factor	16	
Timeplot - Voltage Spectra 150hz	17	
Timeplot - Voltage Spectra 250hz	18	
Timeplot - Voltage Spectra 350hz	19	
Timeplot - Voltage Spectra 450hz	20	
Timeplot - Current Spectra 150hz	21	
Timeplot - Current Spectra 250hz	22	
Timeplot - Current Spectra 350hz	23	
Timeplot - Current Spectra 450hz	24	
Timeplot - ThdV	25	
Min/Max/Avg Power Report	26	
Load Profile - Voltage	27	
Load Profile - Current	28	
Load Profile - kW	29	
Load Profile - kVA	30	
Load Profile - kVAr	31	
Load Profile - pF	32	
Harmonic Against Limits	33	

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 3 of 33

Terminology

A number of standards, terms and abbreviations are used to compile this report; the full descriptions are detailed below.

Term/abbreviation	Description
BS-EN 50160:2000	Voltage Characteristics of Electricity Supplied by Public Distribution Systems.
BS-EN 61000-4-7: 2002	Electromagnetic Compatibility (EMC) General Guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto
IEC 61000-4-30:2003	Electromagnetic Compatibility (EMC) Testing and measurement techniques – Power quality measurement methods
G5/4-1	Energy Networks Association Engineering Recommendation G5/4-1 Dated October 2005"Planning Levels for Harmonic Voltage Distortion and the Connection of Non-Linear Equipment to Transmission Systems and Distribution Networks in the United Kingdom."
ETR 122	Energy Networks Association Engineering Technical Report ETR122 Dated February 2003 "Guide to the Application of Engineering Recommendation G5/4 in the Assessment od Harmonic Voltage Distortion and Connection of Non-Linear Equipment to the Electricity Supply System in the UK.
EMC	Electromagnetic Compatibility – harmonics are low frequency conducted emissions.
Fault Level	The power that will flow in a short circuit condition in a network, this gives a guide to the network impedance.
Harmonic	The harmonic components in a line voltage or current when subjected to a fourier analysis. Principle harmonics in the public supply network are odd integers and are measured up to the 50 th .
NOC	Network Operating Company (the electricity supply company who provide the connection to the network, not necessarily the clients electricity vendor)
MCC	Motor Control Centre
PCC	Point of Common Coupling – the point at which other consumers are connected to the public electricity supply

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR Date 19/06/2013		Issue 0 Page 4 of 33

Harmonic Theory

Basics

Many modern electrical and electronic products incorporate rectifiers, which take a non-linear current from the power supply.

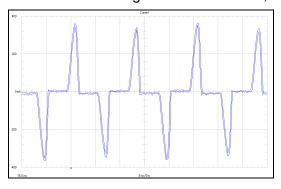
There are a number of different methods of rectification that can be considered, the most common are uncontrolled (a number of diodes connected in a bridge), controlled (a number of thyristors connected in a bridge), and active (a number of IGBTs connected in a bridge).

These currents take the form of repetitive waveforms that can be subject to a fourier analysis to determine the magnitude and angle of each harmonic component. Each type of device will produce a characteristic harmonic spectrum, which will vary with bridge design, levels of filtering and source impedance. As the current will be drawn through the impedance of the supply network it will generate a complementary voltage distortion spectrum.

Typical effects of harmonics are detailed in the table below:-

Effects of high harmonic currents

- Overheating of conductors
- Insulation failure
- Nuisance tripping of circuit breakers
- Nuisance rupturing of fuses
- Additional significant voltage distortion of networks run from generators
- Overheating and possible resonance on networks using capacitors
- Overloaded neutral
- Neutral earth potential (generally due to single phase harmonic loads)
- PC/TV monitor stroboscopic effects
- Malfunction of microprocessor based equipment


Effects of high harmonic voltage distortion

- Causes linear devices to draw non linear current (ie- motors)
- Torque pulsations in motors
- Flicker in lighting
- Capacitor di-electric failure
- Insulation breakdown
- PC/TV monitor and power supply failure
- Electronic lighting failure

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 5 of 33

Current Distortion

Both single and three phase non-linear loads draw harmonic currents. For both controlled and uncontrolled rectifiers the dominant harmonic is generally denoted by n-1, where n is the number of rectifying devices, ie a single phase 4 diode rectifier gives a dominant 3rd. harmonic, and a three phase 6 diode rectifier gives a dominant 5th, harmonic.

| Databook | Home - Information | Home - Informatio

Figure 1

Typical measured current waveform for single phase uncontrolled rectifier

Figure 2

Typical measured harmonic current spectrum for single phase uncontrolled rectifier

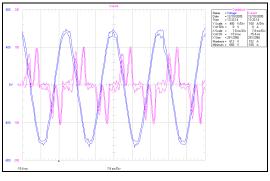


Figure 3

Typical current and voltage waveform for 6 pulse uncontrolled rectifier

Typical current spectrum analysis for 6 pulse uncontrolled rectifier

Figure 4

Voltage Distortion

Voltage distortion propagates throughout the entire distribution network, and must be regulated by the distributor to avoid the damaging effects.

The magnitude of the distortion is dependent on the current and the network impedance, and the lower the network impedance (higher fault level), the lower the resultant voltage distortion.

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter Run			
Dealt with by MR Date 19/06/2013		Issue 0 Page 6 of 33	

The levels of acceptable distortion are laid down in a number of standards including EN 50160, and IEC 61000 series.

Harmonic flow

In theory a current will flow to the lowest impedance, hence it would be expected that harmonic current flow would be up through the increasing voltage levels of the network, however, if there are any resonant components in a network at lower voltage level, such as power factor correction, there can be a flow in this direction.

Limits for Harmonic Voltage & Current

In the UK the network operators are governed by statutory instruments which specify the levels of service and network power quality and forms part of their license agreement.

Part of the power quality requirements are incorporated in an installation standard known as the Energy Networks Association Engineering Recommendation G5/4-1 – Planning levels for harmonic voltage distortion and connection of non-linear equipment to transmission systems and distribution networks in the UK.

This gives a number of Stages that can be applied to connections for consumers, and a guide to its application is available from www.gambica.org.uk.

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter Ru	n		
Dealt with by MR	Date 19/06/2013	Issue 0	Page 7 of 33

Introduction

The objective of the survey is to carry out a power quality survey at Dunton Green.

Measurements were made for 5 days from $21/05/2013 \ 11:11:11 \ to \ 28/05/2013 \ 12:00:00$

Site Data

The site is located at main incomer.

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Ru	า	
Dealt with by MR	Date 19/06/2013	Issue 0 Page 8 of 33

Basic Data

1.	Company (submitting the report)	ENW
2.	Contact Name and Address	John Simpson 07715 428043
3.	Site address	
		Dunton Green
4.	Metering Point Account Number	N/A
5.	Network connection (where	
5.	known)	N/A
6.	Transformer details (where relevant)	N/A
7.	Reason for the survey	Power Quality Survey
8.	Existing non linear load	Non-Linear Load
9.	Details of new non linear load	N/A
10.	Point of measurement	415V Main Incomer
11.	Measurements	Power Quality
12.	Connection Arrangements	4 WIRE / 3 PROBE (WYE)
13.	Measuring instrument	Dranetz PX5
14.	Start time for measurements	21/05/2013 11:11:11
15.	Finish time for measurements	28/05/2013 12:00:00

Report

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter Run			
Dealt with by MR	Date 19/06/2013	Issue 0 Page 9 of 33	

Instrument Configuration

Dranetz Power Xplorer Configuration

Firmware Power Xplorer (c) 2009 Dranetz-BMI

> Jan 10 2011 @ 09:46:34 Ver.: V 4.2, Build: 9, DB ver.: 0

Serial Number PX50ZA319

Site/Filename dunton green filter run Measured from 21/05/2013 11:11:11 Measured to 28/05/2013 12:00:00

File ending OK

Synchronization Standard A

Configuration 4 WIRE / 3 PROBE (WYE)

Monitoring type STANDARD PQ

Nominal voltage 240.0 V 137.8 A Nominal current Nominal frequency 50.0 Hz

No Use inverse sequence Using currents Yes

IEEE 1159 Characterizer mode

Current probes

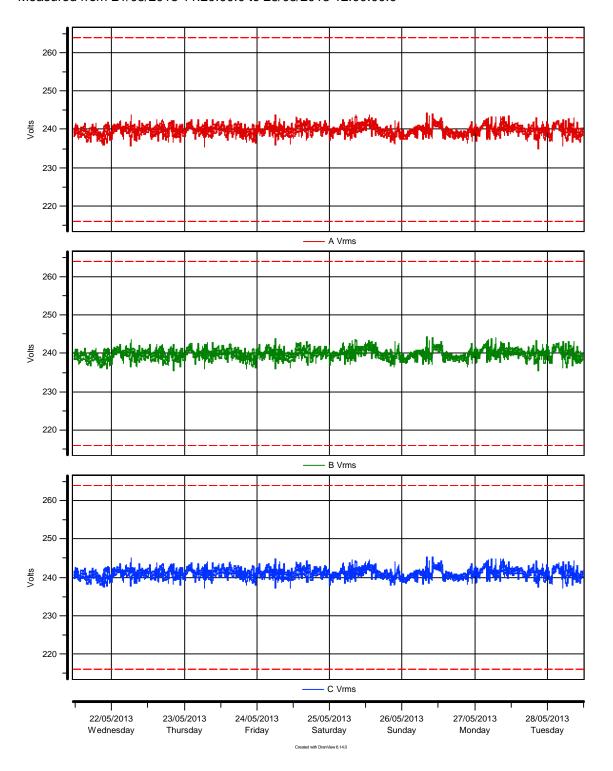
Chan A 6000XL, RR6035A (Range2), 600A (Scale=400.00) Chan B 6000XL, RR6035A (Range2), 600A (Scale=400.00) Chan C 6000XL, RR6035A (Range2), 600A (Scale=400.00) Chan D 6000XL, RR6035A (Range2), 600A (Scale=400.00)

Voltage scale factors

Chan A 1.000 Chan B 1.000 Chan C 1.000 Chan D 1.000

Current scale factors

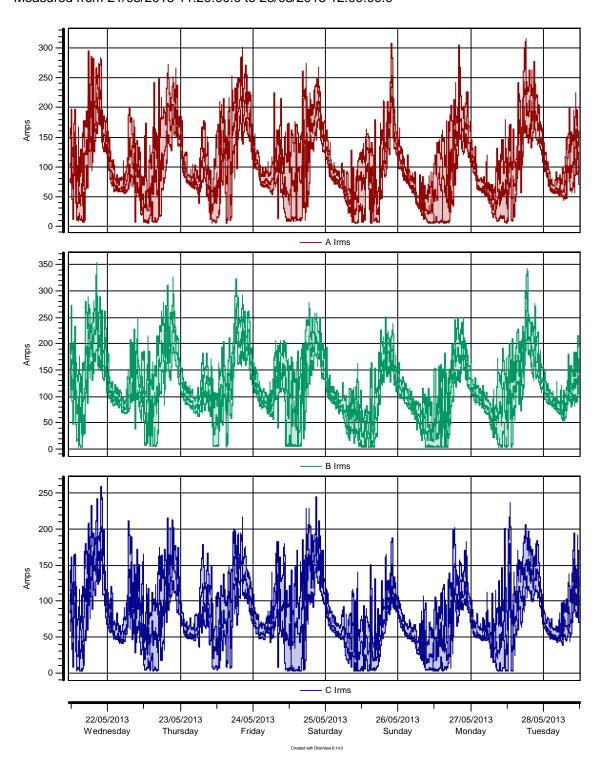
Chan A 1.000 Chan B 1.000 Chan C 1.000 Chan D 1.000


Trigger Response Setups

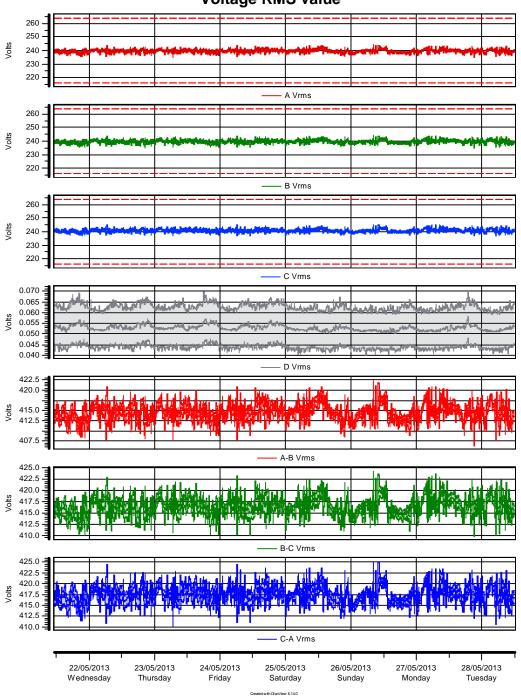
Summary Pre-trigger cycles	6 cycles
Summary Post-trigger cycles IN-TO-OUT	6 cycles
Summary Post-trigger cycles OUT-TO-IN	6 cycles
Waveform Pre-trigger cycles	2 cycles
Waveform Post-trigger cycles	2 cycles

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 10 of 33

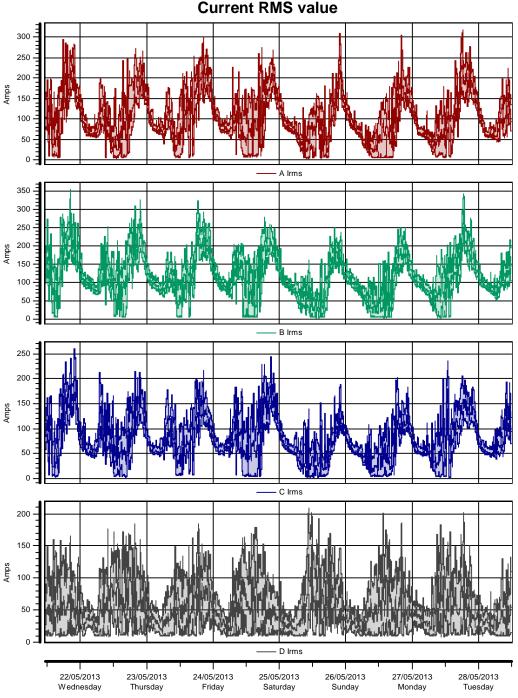
VOLTAGE TIMEPLOTS


Site: dunton green filter run Measured from 21/05/2013 11:20:00.0 to 28/05/2013 12:00:00.0

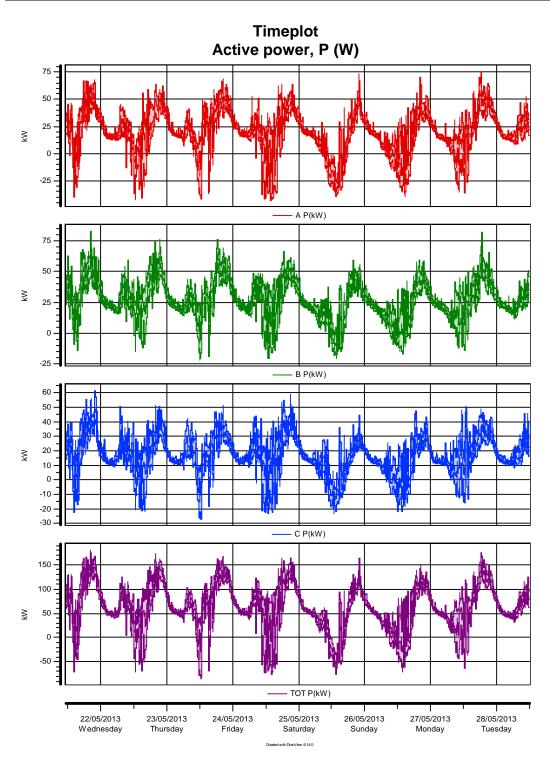
Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	O Page 11 of 33


CURRENT TIMEPLOTS

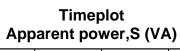
Site: dunton green filter run Measured from 21/05/2013 11:20:00.0 to 28/05/2013 12:00:00.0

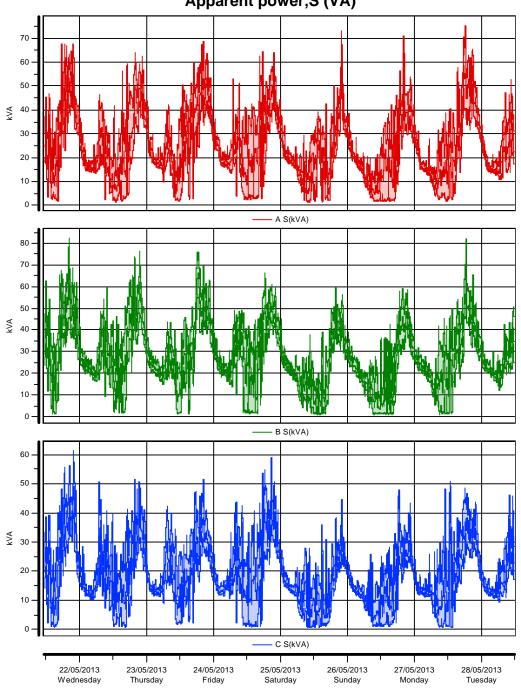

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 12 of 33

Timeplot Voltage RMS value

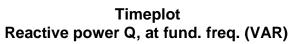


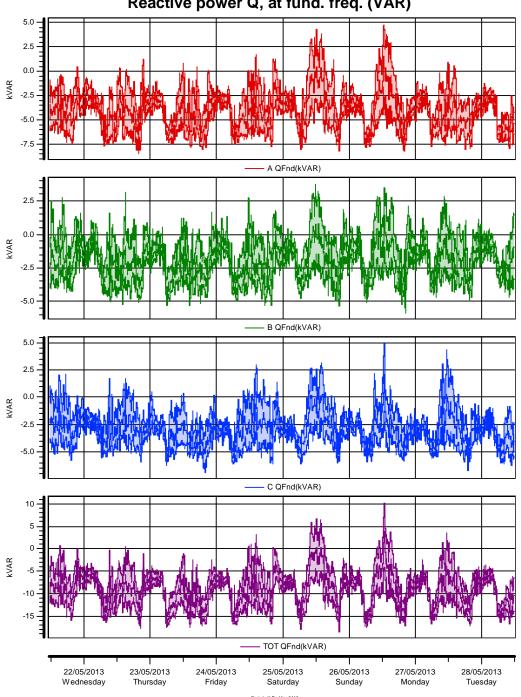
Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 13 of 33

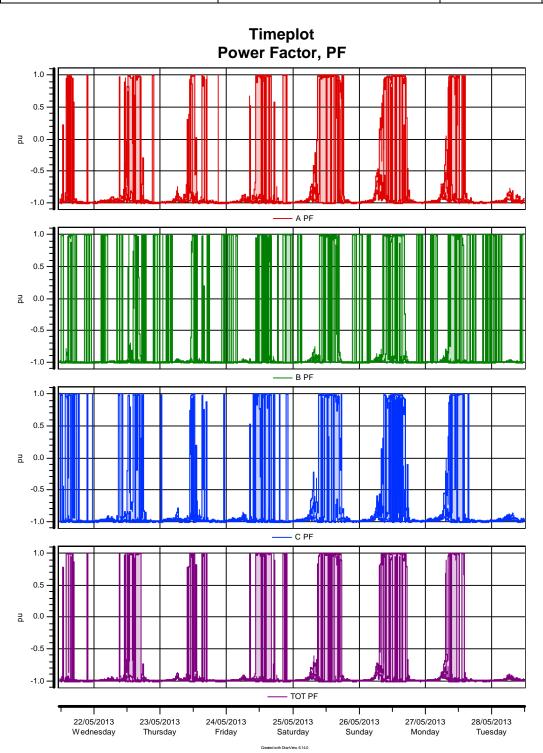


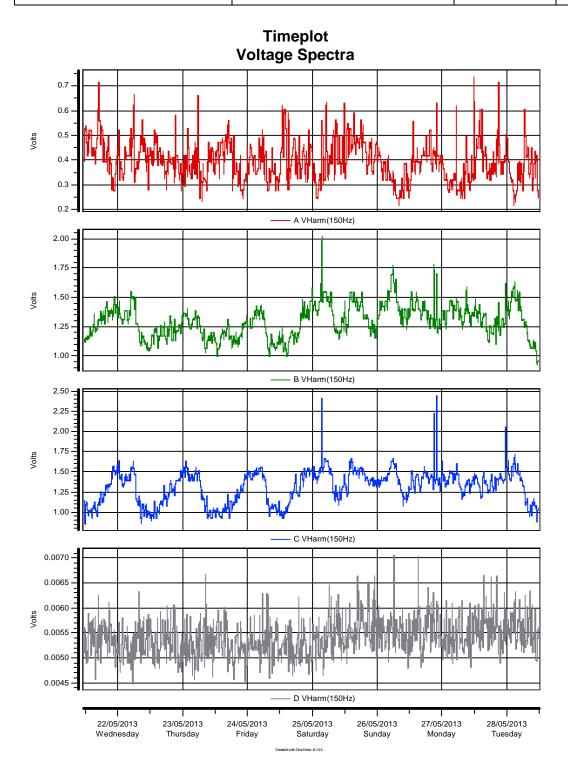


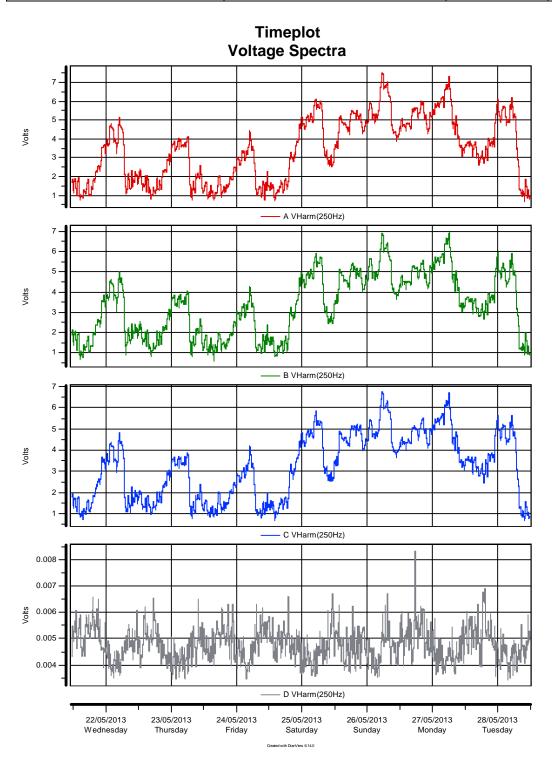
Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 14 of 33

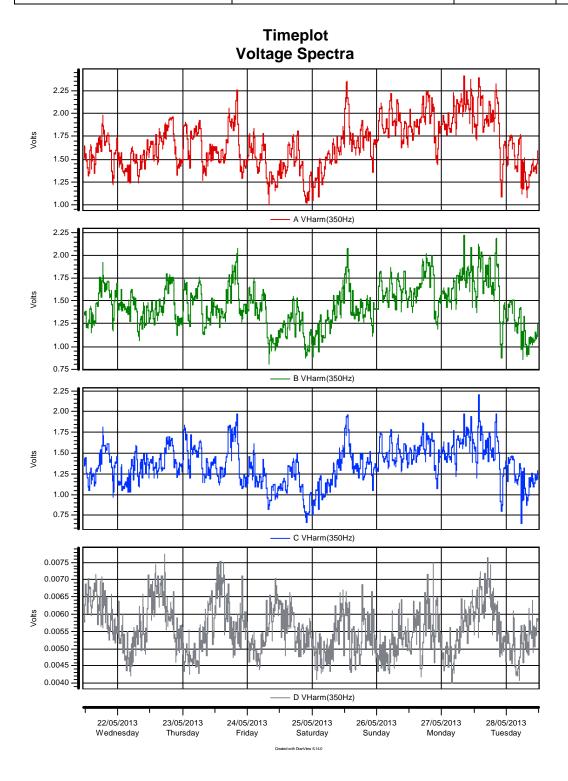


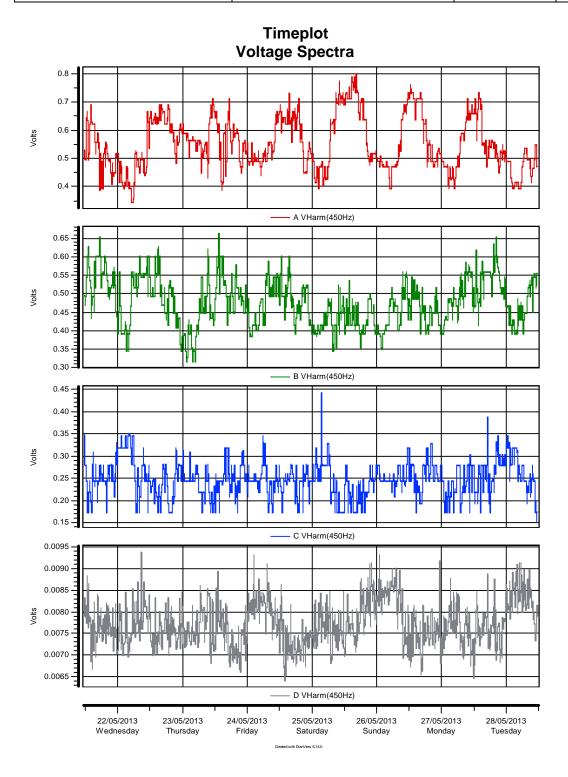

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 15 of 33

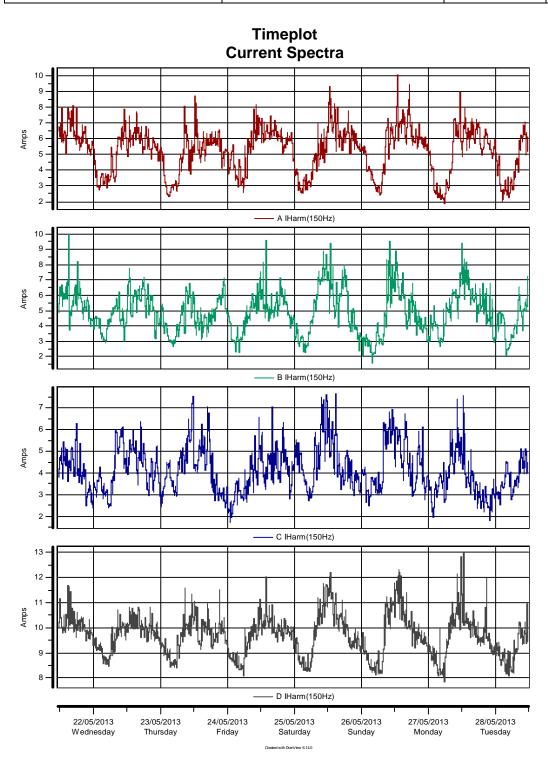

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 16 of 33

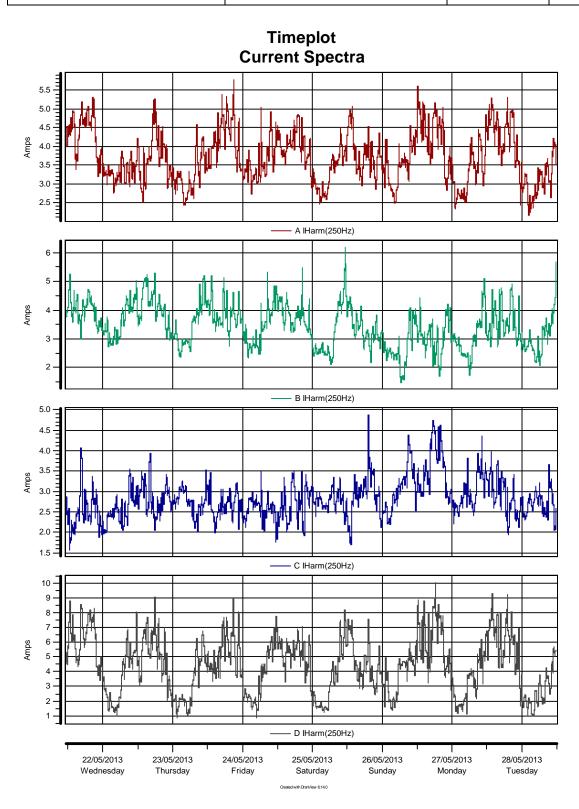


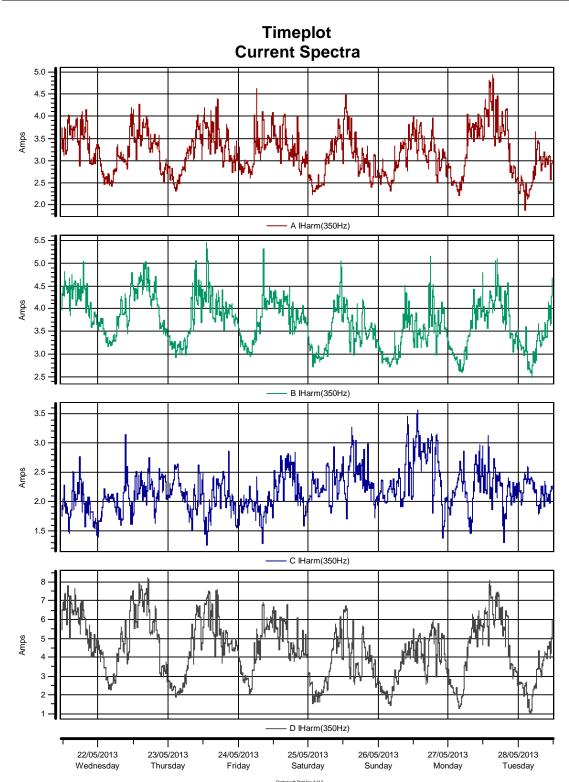

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter F	Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0	Page 17 of 33

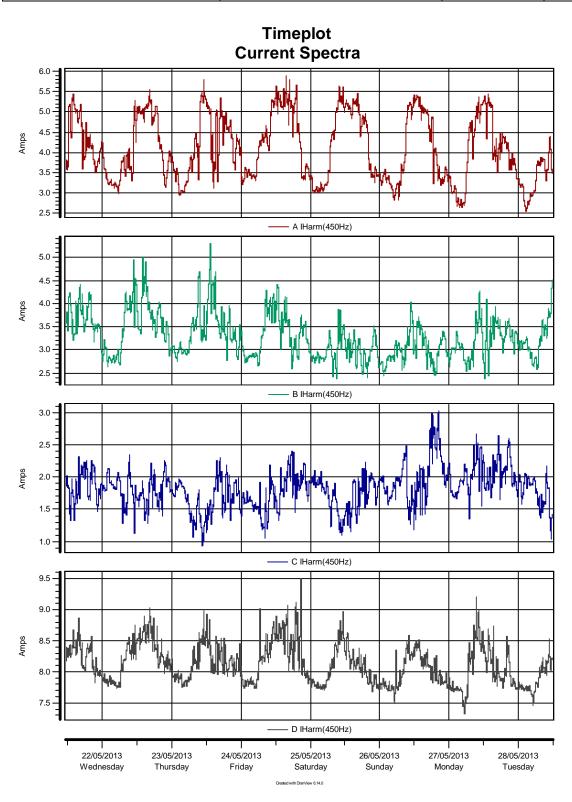

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter R	un		
Dealt with by MR	Date 19/06/2013	Issue 0	Page 18 of 33


Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 19 of 33

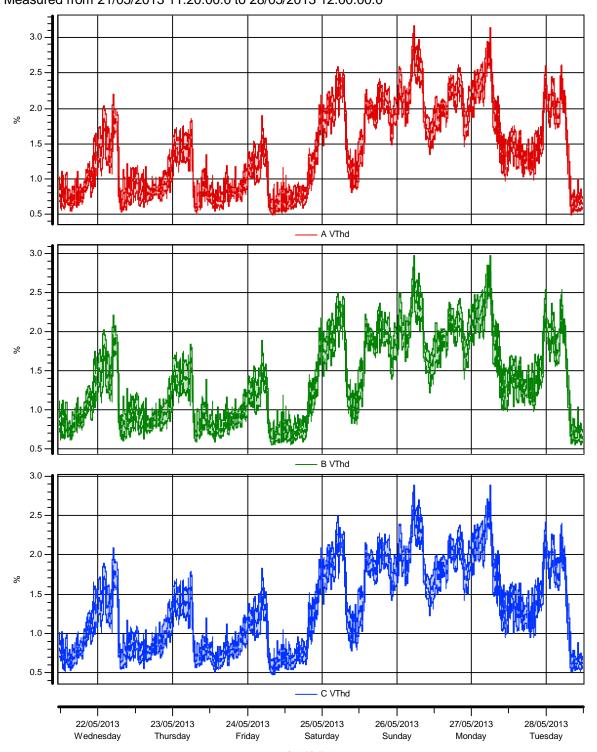

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter F	Run		
Dealt with by MR	Date 19/06/2013	Issue 0	Page 20 of 33


Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter F	Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page	e 21 of 33

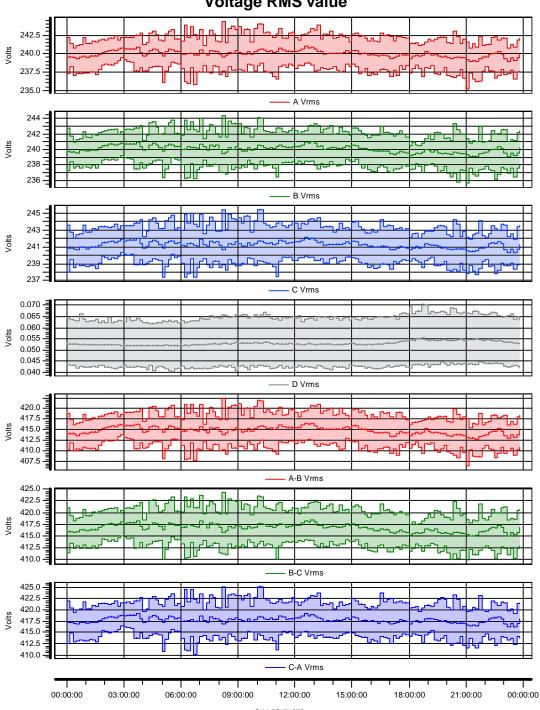

Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter	Run		
Dealt with by MR	Date 19/06/2013	Issue 0	Page 22 of 33


Customer		ABB Ref.	
ENW			
Project		Cust. Ref.	
Dunton Green Report Filter Ru	n		
Dealt with by MR	Date 19/06/2013	Issue 0	Page 23 of 33

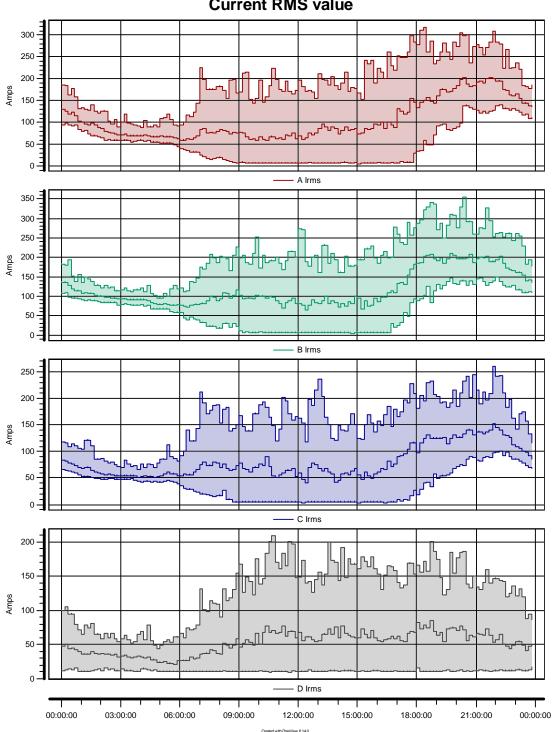
Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 24 of 33


Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 25 of 33

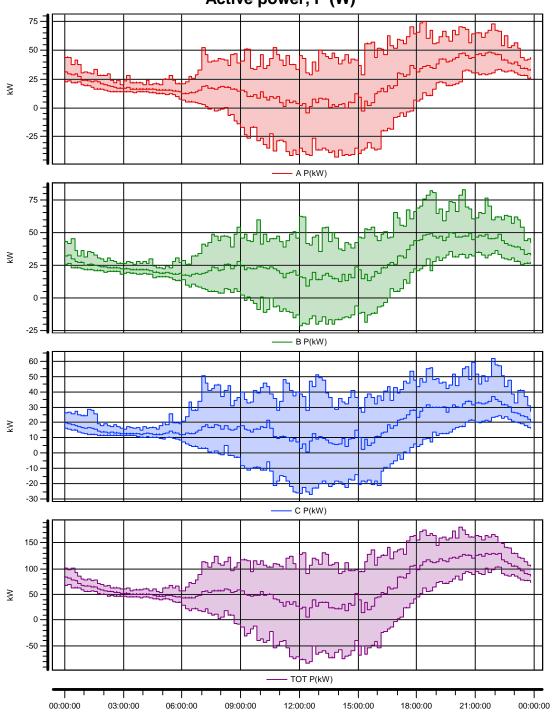
Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 26 of 33

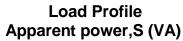

VTHD TIMEPLOTS

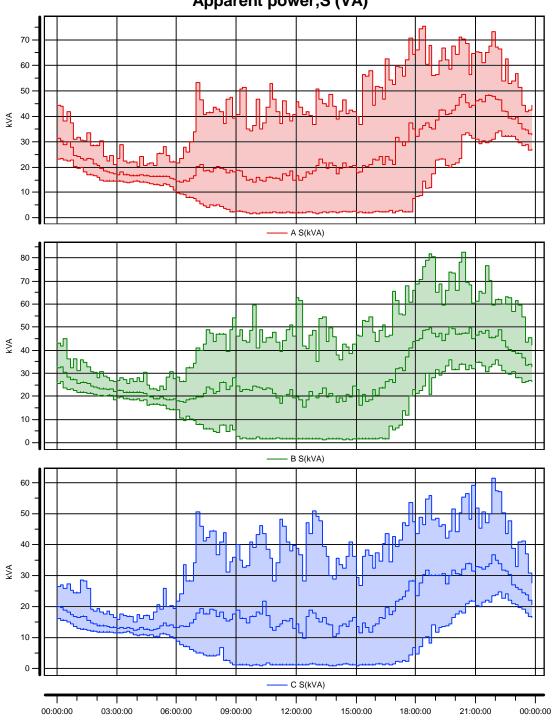
Site: dunton green filter run Measured from 21/05/2013 11:20:00.0 to 28/05/2013 12:00:00.0

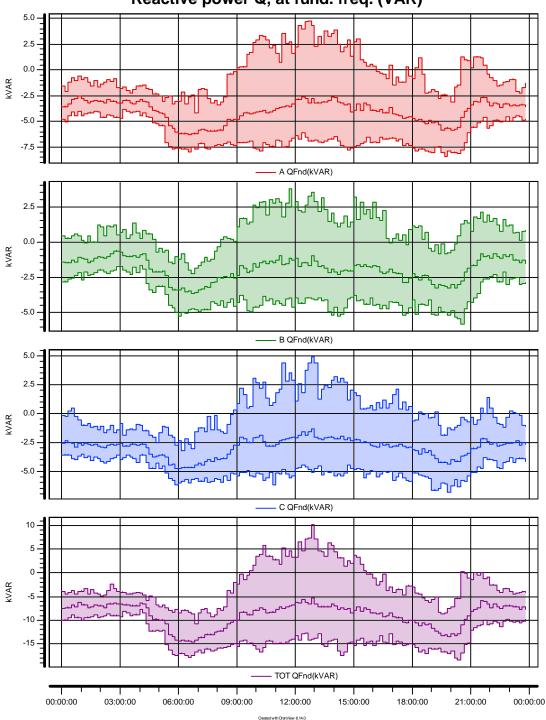

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 27 of 33

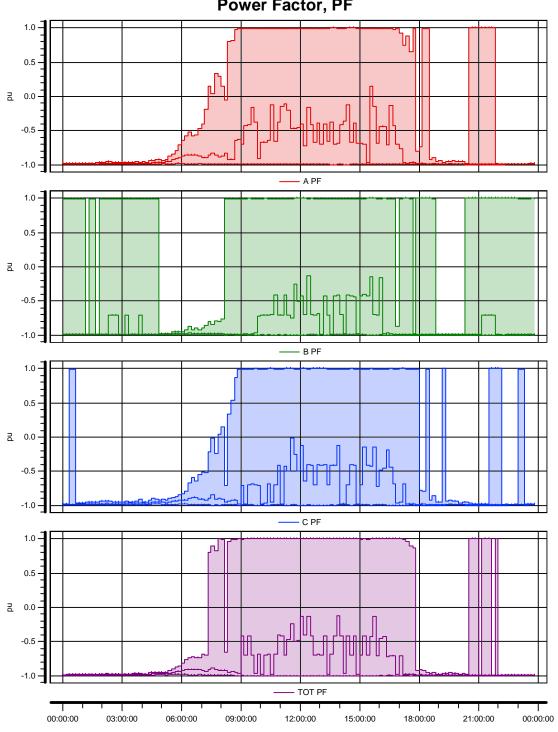
Load Profile Voltage RMS value


Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	^{Date} 19/06/2013	Issue 0 Page 28 of 33




Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 29 of 33


Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 30 of 33


Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 31 of 33

Load Profile Reactive power Q, at fund. freq. (VAR)

Customer		ABB Ref.
ENW		
Project		Cust. Ref.
Dunton Green Report Filter Run		
Dealt with by MR	Date 19/06/2013	Issue 0 Page 32 of 33

Load Profile Power Factor, PF

Customer		ABB Ref.		
ENW				
Project		Cust. Ref.		
Dunton Green Report Filter Run				
Dealt with by MR	Date 19/06/2013	Issue 0 Page 33 of 33		

HARMONICS COMPARED AGAINST LIMITS

Site: dunton green filter run
Measured from 21/05/2013 11:20:00.0 to 28/05/2013 12:00:00.0
G5/4 Stage 1 Curr. Harm. >16A per Phase
Measured Current Harmonics

========	Limit	СНА	СНВ	CHC	Status
H02	28.90 A	1.30	1.34	1.19	PASSED
H03	48.10 A	4.57	5.04	4.26	PASSED
H04	9.00 A	0.67	0.48	0.53	PASSED
H05	28.90 A	4.33	3.93	3.57	PASSED
H06	3.00 A	0.35	0.33	0.33	PASSED
H07	41.20 A	3.58	4.12	2.59	PASSED
H08	7.20 A	0.37	0.29	0.41	PASSED
H09	9.60 A	4.62	3.87	2.47	PASSED
H10	5.80 A	0.25	0.23	0.28	PASSED
H11	39.40 A	3.21	2.71	2.63	PASSED
H12	1.20 A	0.27	0.24	0.26	PASSED
H13	27.80 A	2.68	2.29	2.69	PASSED
H14	2.10 A	0.14	0.19	0.19	PASSED
H15	1.40 A	3.45	2.49	2.21	FAILED
H16	1.80 A	0.14	0.15	0.17	PASSED
H17	13.60 A	3.02	2.23	2.01	PASSED
H18	0.80 A	0.10	0.09	0.15	PASSED
H19	9.10 A	1.46	1.27	1.40	PASSED
H20	1.40 A	0.09	0.11	0.13	PASSED
H21	0.70 A	0.69	0.49	0.72	FAILED
H22 H23	1.30 A 7.50 A	0.07 0.93	0.07 0.99	0.08 1.17	PASSED PASSED
H24	0.60 A	0.93	0.99	0.05	PASSED
H25	4.00 A	0.06	0.03	0.05	PASSED
H26	1.10 A	0.74	0.05	0.03	PASSED
H27	0.50 A	0.45	0.34	0.33	PASSED
H28	1.00 A	0.43	0.03	0.05	PASSED
H29	3.10 A	0.51	0.46	0.57	PASSED
H30	0.50 A	0.03	0.02	0.04	PASSED
H31	2.80 A	0.27	0.24	0.23	PASSED
H32	0.90 A	0.02	0.02	0.03	PASSED
H33	0.40 A	0.21	0.22	0.20	PASSED
H34	0.80 A	0.02	0.02	0.02	PASSED
H35	2.30 A	0.22	0.17	0.19	PASSED
H36	0.40 A	0.02	0.02	0.02	PASSED
H37	2.10 A	0.20	0.17	0.18	PASSED
H38	0.80 A	0.02	0.02	0.03	PASSED
H39	0.40 A	0.15	0.12	0.13	PASSED
H40	0.70 A	0.02	0.01	0.02	PASSED
H41	1.80 A	0.18	0.14	0.16	PASSED
H42	0.30 A	0.02	0.02	0.02	PASSED
H43	1.60 A	0.13	0.13	0.17	PASSED
H44	0.70 A	0.01	0.01	0.02	PASSED
H45	0.30 A	0.11	0.08	0.08	PASSED
H46	0.60 A	0.02	0.02	0.02	PASSED
H47	1.40 A	0.08	0.09	0.10	PASSED
H48	0.30 A	0.02	0.01	0.02	PASSED
H49	1.30 A	0.07	0.07	0.08	PASSED
H50	0.60 A	0.00	0.00	0.00	PASSED