Pelectricity

Bringing energy to your door

重重合置

3rd November 2017

Stay connected... F B O in www.enwl.co.uk

Introducing Electricity North West

£12 billion of network assets

56 000 km of network ● 96 bulk supply substations 363 primary substations ● 33 000 transformers

	NORW∃B	United Utilities		É É	Celectricity north west
1948	1990	1995	2000	2007	2010
Electricity national-isation: North West Electricity Board	Privatisation: Norweb plc	North West Water takeover of Norweb: United Utilities	Norweb supply business sold	Sale of United Utilities Electricity to private investors	Acquisition of UU Electricity Services:

RIIO regulatory framework

RIIO =

Outputs

14 DNO areas

Eight years

£1.8

BILLION

online available: www.ofgem.gov.uk/publications-and-updates/infographic-how-ofgems-network-price-control-proposals-riio-ed1-will-affect-you

Reactive power (Q) demand in UK	Long-term forecasting of Q demand	
Critical at transmission-distribution (T-D) interfaces	Limited works	
Acute Q decline during minimum load (P)	REACT project (2013-2015) First approach using network and demand data	
Challenges to maintain transmission voltages	ATLAS project (2015-2018) Enhanced approach, more extensive network modelling	

Two related NIA projects

Distribution networks in the UK

8

Monitored reactive demand

Scenario based						
Time-series network modellingT-D interface to primary substationsHalf-hourly resolution in analyses	Effects of low carbon technologies (LCTs), econometrics, demographics, renewables	Use of forecasted P demand and generation Focus on periods of peak & min P demand				

- # #

Å

• Assessment using future P at primary substations (EELG model) and trends in Q/P ratio

Future Q at primary substations – no network modelling

- Q/P ratio trends
 - historical FY12 to 16 measured P and Q demand
 - seasonal trends
 - individual linear trends
 - min/mean/max daily P
 - future Q/P ratios
 - half-hourly for whole year
 - per GSP

Implementation of proposed methodology

Processes & modelling assumptions

Challenges to validate the Q forecasting tool

Validation of Q forecasting tool – automated processing imperfect monitoring data

Identification of Data Problems

Data Corrections (Half-hourly & daily analyses)

Future trends in Q exports to transmission

16

Future trends in Q exports to transmission

17

Duration of Q exports to transmission

Conclusions

Proposed methodology for long-term forecasting of Q demand using network modelling Transition to business as usual using time-series modelling of the whole 132 to 33kV network in North West of England Practical benefits from time-series network modelling

Time windows of VAr exports to transmission

Future trends in individual and groups of substations

Thank you for your attention! ③

christos.kaloudas@enwl.co.uk rita.shaw@enwl.co.uk

