Sentinel – deep dive

Novel fault location for overhead lines Dr. Geraldine Paterson & Jonathan Rodgers

LCNI conference Thursday 31 October 2019

Research and development in partnership with

Bringing energy to your door

書圖書商書

Stay connected... **f in** www.enwl.co.uk

The problem

Faults on rural OHL networks can be difficult to detect and locate Transient/emerging Broken conductor Low clearance

In storm situations there can be multiple faults on single circuits Traditional location techniques are time consuming, dangerous and lead to poor customer experience

Some faults, if left undetected, can present a serious danger to life

Current timeline

What does it look like?

ğ

What is Sentinel?

Finds multiple faults of multiple types on a rapidly reconfiguring network in near real time

Project drivers

Objective Find damage in real time Optimise deployment of repair teams

Output Fault location system Location within 500m for high current faults Section for low current/low lines (worst case) **Right teams to right location** Maximising productivity of repair teams Reduces safety risk

Location techniques Uses a combination of different location techniques Integrate with real time systems

Responds to changes in network configuration

Project objectives

×

Prototyping & testing – Overhead line construction

Current sensors

Voltage sensor & HF coupler

Surge arresters

Voltage transformer

Sentinel cabinet

Current sensor, off-the-shelf solution

Voltage sensor crossbar (VSC)

Voltage sensor crossbar (VSC)

Combined voltage and current sensor

Connected via flying section

Off the shelf current sensor

Site selection and approvals

Trial circuit selection	Approval for use of new equipment	Codes of practice drafted	Trial installation at Electricity North West training academy – led to redesigns	Reviewed and approved codes of practice

×

Installations and practical considerations

Sentinel voltage sensor 1 phase installation

Spacing layout diagram

Dashboard

Phase 1	6165 V	0 A
Phase 2	6225 V	ОA
Phase 3	6256 V	ОA

Pole detail	
Pole name:	Pole 10
Pole number:	542903
Pole location:	Charnleys Lane
Pole longitude:	-2.93°
Pole latitude:	53.68°
Pole notes:	Plant Ref: 540435

Temperatures	
CPU	28.018°C
СРИ РСВ	32.25°C
FPGA	43°C
FPGA PCB	30.5°C
	Last updated on: 01/10/2019 15:06:44

GPS	
Longitude	-2.93°
Longitude error	6.92m
Latitude	53.68°
Latitude error	6.95m
Altitude	10.52m
Altitude error	23.00m
Fix type	3D
Satellites number	18
	Last updated on: 01/10/2019 15:06:44

Version

Software version

Platform version

Wireless version

FPGA firmware version

Modem firmware version

EVENT TYPE	© EVENT TIME	↑ RECEIVED TIME	† DETAILS	Power supply
POWER_UP	07/08/2019 15:04	07/08/2019 15:06	Fpga Firmware Version: 0.11.0.7	Mains
			Modem Firmware Version: Platform Version: 4.9.45-Dnm3pv2+G54c77e7 Software Version: 2.3.0 Wireless Version:	Battery
POWER_UP	17/06/2019 19:59	17/06/2019 19:59	Fpga Firmware Version: 0.11.0.7 Modem Firmware Version: 20.00.403 Platform Version: 4.19.45-Dnm3pv2+C54c77e7 Software Version: 2.3.0 Wireless Version:	

0

Last	updated	on:	07/08/2019	15:04:23

4.19.45-dnm3pv2+g54c77e7

2.3.0

0.11.0.7

Lowered power lines – detection

Network behaviour

Sentinel hardware can transmit high frequency signals onto the overhead line network, superimposed upon the 50 Hz mains frequency This signal will propagate along the line as a wave at close to the speed of light

Signals travelling in a line – theory

Dispersion and attenuation

Considering the lumped element model:

The resistive components are uniformly lossy This leads to signal attenuation The reactive components are frequency dependent and attenuate high frequencies more This leads to dispersion of the signal

The further the signal travels in the network, the more difficult it is to distinguish features

Spread Spectrum TDR

Ideally we would like to inject a very short but very high voltage pulse to overcome attenuation and dispersion problems This is not practical due to: Safety concerns, hardware constraints and emissions constraints

An alternative is to spread the same energy over a large frequency band but at a much lower amplitude We can use advanced signal processing techniques to sharpen the network response of the network as if we had transmitted a sharp pulse

Lowered lines from a TDR view

Lines have capacitance and inductance between them and to ground. These define the inductance and capacitance of the transmission line, which define the characteristic impedance:

$$Z_0 = \sqrt{\frac{L}{C}}$$

Using the equations for capacitance and inductance from a wire to a conducting plane:

$$\mathbb{C}_{\mathsf{PG}} = rac{2\piarepsilon l}{\lnigg(rac{d}{a}+\sqrt{rac{d^2}{a^2}-1}igg)}$$

$$-\mathsf{PG} = \frac{\mu_0 l}{2\pi} \left[\ln\left(\frac{2d}{a}\right) + \frac{Y}{2} \right]$$

We see that in this example, for the dropped line, capacitance should increase while inductance should decrease, leading to a decrease in Z_0 .

Measurements have been taken across the following variables:

 Phase-phase and phase-earth transmission modes
Dry ground and wet ground conditions
Normal network, 1 wire lowered, 2 wires lowered

Lowered wires results

Simulations of the first Sentinel circuit (Boundary Lane) were conducted in EMTP

Simulation results

Technical challenges – environmental

Technical challenges – geometry

Network configuration challenges

During fault conditions, network switches and fuses can operate, leading to different TDR traces

At the device level, large changes in network response can be averaged in different "bins" At the server level, locations of differences can be correlated with network switch locations

Network coverage

Blind range

Eliminated by optimal impedance matching & multiple measurement points. Sensitivity Dependant on physical parameters, signal and noise levels Distance improved by long term statistical characterisation, spread spectrum

TDR

Attenuation due to overhead line to cable transitions – optimise the location of Sentinel units. Installations Should be analysed and optimised for detection performance Critical areas can be targeted Detection of lowered line will need to provide confidence level

Progress/next steps

Installation progress	Verification	Design process	NMS integration	Application of HV faults for calibration
Complete installation rollout in early 2020	Verification of algorithm with real fault detected on network	Simplifying design and installation process	Automatic state detection Results directly to NMS	Development of RAMS for application of HV faults Approval from senior management team Install test system for simulation of lowered conductor Develop overall test plan for HV faults

ğ

innovation@enwl.co.uk

www.enwl.co.uk/innovation

@ElecNW_News

0800 195 4141

linkedin.com/company/electricity-north-west

facebook.com/ElectricityNorthWest

youtube.com/ElectricityNorthWest

Please contact us if you have any questions or would like to arrange a one-to-one briefing about our innovation projects

QUESTIONS & ANSWERS