| Designer Embodied Carbon (EC) Calculation - Civil & Electrical |                                                                   |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                                                | Build Table Most Contributing Materials 1%>. Embodied Carbon A1-5 |  |  |  |  |
| Project Name:                                                  | Rochdale Grid                                                     |  |  |  |  |
| Project Scope:                                                 | GT1 & GT2 Replacement                                             |  |  |  |  |

| Project Embodied Carbon Breakdown<br>and Totals t(Co2e): |             |                                                  |
|----------------------------------------------------------|-------------|--------------------------------------------------|
| Total A1-5w                                              | 621.9900413 |                                                  |
| A5a                                                      | 23.63       |                                                  |
| Total A1-5 t(CO2e)                                       |             | Note: Total A1-5t(CO2e): Total<br>5w + A5a = Ans |

| Calculation Date:                                         | 01/10/2025     |
|-----------------------------------------------------------|----------------|
| Project Code:                                             | D.50015706.895 |
| Project Completed in Financial Year:                      | 2025           |
| Estimated Cost of Civil<br>Build(£):<br>(To Estimate A5a) | £3,376,184     |

| Structural timber:<br>in Tonnes,<br>(To Calculate Sequstration Value) | 0 |
|-----------------------------------------------------------------------|---|
| Sequestration Value t(CO2e):                                          | 0 |

| Design Values                    |                                                                                                                                                                             |                                                                                      |                      |             |                                         |       |          |        |        |          |             |                                  |                |                 |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|-------------|-----------------------------------------|-------|----------|--------|--------|----------|-------------|----------------------------------|----------------|-----------------|
|                                  | Embodied Carbon t(CO2e)                                                                                                                                                     |                                                                                      |                      |             | ECF kg(CO2e/kg) Embodied Carbon t(CO2e) |       |          |        |        | d Carbon | t(CO2e)     | Total EC t(CO2e)                 |                | Notes/ Comments |
| Stage of works                   | Material                                                                                                                                                                    | Units values to input in conversion to tonnes cell                                   | Conversion to Tonnes | Quantity(t) | A1-3                                    | A4    | A5w      | A1-3   | A4     | A5w      | A1-5w       |                                  | A1-5w          |                 |
| Foundation Excavation & Backfill | Soil assumed 5% cement content. 1m3<br>= 1.9 tonnes of clay soil. Ref:                                                                                                      | input value in m3 (in 'conversion to tonnes' cell)                                   | 20                   | 46.44       | 0.061                                   | 0.005 | 0.004452 | 2.8328 | 0.2322 | 0.2068   | 3.27179088  | Foundation Excavation & Backfill | 3.27179088     |                 |
|                                  | Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3                                                                                                         | input value in m3 (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 0.086                                   | 0.005 | 0.005777 | 0      | 0      | 0        | 0           | Foundation                       | 0              |                 |
| Foundation                       | PVC Pipes (Waste water) weight @ 0.72kg / m                                                                                                                                 | input value in meters (in 'conversion to tonnes' cell)                               | 0                    | 0           | 3.23                                    | 0.005 | 0.172409 | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Concrete Kerb 26.74 linear meters per m3                                                                                                                                    | tonnes' cell)                                                                        | 0                    | 0           | 0.188                                   | 0.005 | 0.00211  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | DTP type 1, 2200kg/m3 (compacted)                                                                                                                                           | input value in m3 (in 'conversion to<br>tonnes' cell)                                | 58                   | 127.6       | 0.005                                   | 0.005 | 0.001484 | 0.638  | 0.638  | 0.1894   | 1.4653584   |                                  | 1.4653584      |                 |
|                                  | Ready mix concrete 32/40. 2350kg / m3                                                                                                                                       | input value in kg (in leapversion to                                                 | 161                  | 378.35      | 0.132                                   | 0.005 | 0.008215 |        |        |          | 54.94209525 |                                  | 54.94209525    |                 |
| Reinforced Concrete              | Rebar (New) weight @ H10 = 0.62kg / m                                                                                                                                       | tonnes' cell)                                                                        | 253                  | 0.253       | 2.77                                    | 0.032 | 0.14946  | 0.7008 | 0.0081 | 0.0378   | 0.74671938  | Reinforced Concrete              | 0.74671938     |                 |
|                                  | Rebar (New) weight @ H12 = 0.89kg / m                                                                                                                                       | tornes cen)                                                                          | 479                  | 0.479       | 2.77                                    | 0.032 | 0.14946  | 1.3268 | 0.0153 | 0.0716   | 1.41374934  |                                  | 1.41374934     |                 |
|                                  | Rebar (New) weight @ H16 = 1.58kg / m                                                                                                                                       | input value in kg (in 'conversion to<br>tonnes' cell)                                | 3964                 | 3.964       | 2.77                                    | 0.032 | 0.14946  | 10.98  | 0.1268 | 0.5925   | 11.69958744 |                                  | 11.69958744    |                 |
|                                  | Stainless Steel Windposts Grade 304<br>weight @ 37.5kg / m                                                                                                                  | input value in meters (in 'conversion<br>to tonnes' cell)                            | 0                    | 0           | 6.15                                    | 0.032 | 0.062    | 0      | 0      | 0        | 0           |                                  | 0              |                 |
| Steel works                      | Steel General (New) weight @ 7900kg /<br>m3 (contractor weights for materials on<br>steel is a must)                                                                        | input value in kg (in 'conversion to tonnes' cell)                                   | 8528.54              | 8.52854     | 2.89                                    | 0.032 | 0.0294   | 24.647 | 0.2729 | 0.2507   | 25.17113296 | Steel works                      | 25.17113296    |                 |
|                                  | Mild Steel Fencing weight @ 25kg per linear meter                                                                                                                           | input value in meters (in 'conversion<br>to tonnes' cell)                            | 0                    | 0           | 1.53                                    | 0.005 | 0.01553  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Clay Brick (2000kg / m3)                                                                                                                                                    | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 0.24                                    | 0.005 | 0.06575  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
| Superstructure                   | Louvres RSH5700 edition / weight @ 25kg/m2 (Assumed alluminium frame)                                                                                                       | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 12.79                                   | 0.032 | 0.1284   | 0      | 0      | 0        | 0           | Superstructure                   | 0              |                 |
|                                  | Mineral wool insulation, Rockwool RW3, weight at 60kg/m3                                                                                                                    | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 1.28                                    | 0.005 | 0.069059 | o      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Autoclaved Aerated Concrete Block<br>600kg / m3                                                                                                                             | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 0.375                                   | 0.005 | 0.0995   | o      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Timber truss weight @ 3kg / m                                                                                                                                               | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 0.42                                    | 0.005 | 0.12847  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
| Roof                             | Concrete roof tiles weight @ 3kg / m2                                                                                                                                       | input value in kg (in 'conversion to tonnes' cell)                                   | 0                    | 0           | 0.1                                     | 0.005 | 0.00123  | 0      | 0      | 0        | 0           | Roof                             | 0              |                 |
|                                  | Concrete Roof Columns weight @ 355kg<br>/ m                                                                                                                                 | input value in meters (in 'conversion to tonnes' cell)                               | 0                    | 0           | 0.188                                   | 0.005 | 0.00211  | o      | 0      | 0        | 0           | Roof                             | 0              |                 |
|                                  | PVC Pipes (weight @ 0.72kg / m)                                                                                                                                             | input value in meters (in 'conversion to tonnes' cell)                               | 0                    | 0           | 3.23                                    | 0.005 | 0.172409 | 0      | 0      | 0        | 0           |                                  | 0              |                 |
| Cable Excavation & Backfill      | Soil assumed 5% cement content. 1m3<br>= 1.9 tonnes of clay soil. Ref:<br>(https://coolconversion.com/volume-mass<br>construction/~1~cubic-meter~of~clay-<br>soil~to~tonne) | input value in m3 (in 'conversion to                                                 | 88                   | 167.2       | 0.061                                   | 0.005 | 0.004452 | 10.199 | 0.836  | 0.7444   | 11.7795744  | Cable Excavation &<br>Backfill   | 11.7795744     |                 |
|                                  |                                                                                                                                                                             |                                                                                      |                      |             |                                         |       |          | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Cable Ducts PVC-3 Phases -ave weight 3.3kg / m                                                                                                                              | to tonnes' cell)                                                                     | 160                  | 0.528       | 3.23                                    | 0.005 | 0.172409 |        |        |          | 1.799111952 | 2                                | 1.799111952    |                 |
| Cables                           | Single Core Cable 33kV - 3 Phases :<br>ave weight @ 15.6kg/m<br>Single Core Cable 6.6 / 11kV - 3                                                                            | to tonnes' cell)  input value in meters (in conversion to tonnes' cell)              | 440                  | 6.864       | 3.8100                                  | 0.16  | 0.03988  | 26.152 | 1.0982 | 0.2737   | 27.52381632 | Cables                           | 27.52381632    |                 |
|                                  | Phases : av weight @ xxkg/m  Muilticore Cable : av weight @ 1.5kg/m                                                                                                         | to tonnes' cell) input value in meters (in 'conversion                               | 0                    | 0<br>3.27   | 3.8100                                  | 0.032 | 0.0386   | 12.099 | 0 1046 | 0.1226   | 12.326265   |                                  | 0<br>12.326265 |                 |
|                                  | Transformer 33kV                                                                                                                                                            | input value in Tonnes (in                                                            | 0                    | 0           | 3.7000                                  | 0.032 | 0.00178  | 0      | 0.1040 | 0.1220   | 0           |                                  | 0              |                 |
| Transformers                     | Transformer 132kV                                                                                                                                                           | 'conversion to tonnes' cell)  input value in Tonnes (in 'conversion to tonnes' cell) | 160.4                | 160.4       | 2.67                                    | 0.032 | 0.0272   | 428.27 | 5.1328 | 4.3629   |             | Transformers                     | 437.76368      |                 |
|                                  | Transformer EAT                                                                                                                                                             | input value in Tonnes (in<br>'conversion to tonnes' cell)                            | 10.1                 | 10.1        | 2.67                                    | 0.16  | 0.02848  | 26.967 | 1.616  | 0.2876   | 28.870648   |                                  | 28.870648      |                 |
|                                  | Protection Panels: ave weight 260kg                                                                                                                                         | input value in Tonnes (in 'conversion to tonnes' cell)                               | 4                    | 1.04        | 3.0300                                  | 0.032 | 0.0308   | 3.1512 | 0.0333 | 0.032    | 3.216512    |                                  | 3.216512       |                 |
|                                  | Switch Gear 2                                                                                                                                                               | input value in Tonnes (in<br>'conversion to tonnes' cell)                            | 0                    | 0           |                                         | 0.16  | 0.00178  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Switch Gear 3                                                                                                                                                               | input value in Tonnes (in<br>'conversion to tonnes' cell)                            | 0                    | 0           |                                         | 0.16  | 0.00178  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
| Switch Gear                      | Switch Gear 4                                                                                                                                                               | input value in Tonnes (in 'conversion to tonnes' cell)                               | 0                    | 0           |                                         | 0.16  | 0.00178  | 0      | 0      | 0        | 0           | Switch Gear                      | 0              |                 |
|                                  | Switch Gear 5                                                                                                                                                               | input value in Tonnes (in 'conversion to tonnes' cell)                               | 0                    | 0           |                                         | 0.16  | 0.00178  | 0      | 0      | 0        | 0           |                                  | 0              |                 |
|                                  | Switch Gear 6                                                                                                                                                               | input value in Tonnes (in 'conversion to tonnes' cell)                               | 0                    | 0           |                                         | 0.16  | 0.00178  | 0      | 0      | 0        | 0           |                                  | 0              |                 |

| Calculation Notes:                                     |                                                   |
|--------------------------------------------------------|---------------------------------------------------|
| Weight of structural Timber (Excluding temp works):    | tonnes                                            |
| Weight of Temporary Timber (formworks, Assumed reuse): | tonnes                                            |
| Foundation -Trench Excavations                         | At Length[ ] m x Width[ ] m x Depth[ ] m = [ ] m3 |
| Cables - Trench Excavtions                             | At Length[ ] m x Width[ ] m x Depth[ ] m = [ ] m3 |
| Power Cable circuit lengths                            | [ ] meter lengths                                 |

|                | Designer to fill in all                                                                                | cells highlighted i                                                                                                                                                                                                                                                                                        | n light grey                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         | Reference note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculations & Embodied Carbon factors for                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | materials used in the tableare sourced from the Brisa (ICE) & IstructE                                                                                                                                          |
| Low            |                                                                                                        | Medium                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               | High                                                                                                                                                                                                                                                                                                                                                                                    | Ref for material Emobdied Carbon Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).                                                                                                                  |
| 0              | 12.5                                                                                                   | 25                                                                                                                                                                                                                                                                                                         | 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Embodied Carbon - The Inventory of Carbon and Energy (ICE) (greenbuildingencyclopaedia.uk)                                                                                                                      |
| structural tim | ber values in tonnes                                                                                   | can be used to calc                                                                                                                                                                                                                                                                                        | culate the sequ                                                                                                                                                                                                                                                                                                                                                                                                                               | estration value, this is used                                                                                                                                                                                                                                                                                                                                                           | Ref for calculating Embodied Carbon A1-5&<br>Cell colour formatting:                                                                                                                                                                                                                                                                                                                                                                                                                                              | The Institution of Structural Engineers 'How to calculate embodied carbon'.                                                                                                                                     |
|                |                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               | e tab below.                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A brief guide to calculating embodied carbon (istructe.org)                                                                                                                                                     |
|                | The 'Embodiecontributing mindicate.  Low  0  The notes tab structural tim to calculate the Example: 20 | The 'Embodied Carbon t(CO2e)' cel contributing materials. Below this cel indicate.  Low  0 12.5  The notes table to the left can be us structural timber values in tonnes to calculate the amount of carbon s Example: 20 tonnes of structural timber values in tonnes to calculate the amount of carbon s | The 'Embodied Carbon t(CO2e)' cells are using a traffic contributing materials. Below this cell in an example of tridicate.  Low Medium  0 12.5 25  The notes table to the left can be used to help breakd structural timber values in tonnes can be used to calculate the amount of carbon storage throughest becample: 20 tonses of structural timber values in tonnes can be used to calculate 20 tonness of structural timer x -1.64 kg/C | contributing materials. Below this cell in an example of how the colour findicate.  Low Medium  0 12.5 25 37.5  The notes table to the left can be used to help breakdown and revies structural timber values in tonnes can be used to calculate the sequ to calculate the amount of carbon storage throughout the builds life Example: 20 tonnes of structural timer x -1.64 kg (CO2e) | The 'Embodied Carbon t(CO2e)' cells are using a traffic light system to indicate, low- high contributing materials. Below this cell in an example of how the colour format works and what they indicate.  Low Medium High  0 12.5 25 37.5 50  The notes table to the left can be used to help breakdown and review calculations. The structural timber values in tonnes can be used to calculate the sequestration value, this is used to calculate the amount of carbon storage throughout the builds life cycle | The 'Embodied Carbon t(CO2e)' cells are using a traffic light system to indicate, low- high contributing materials. Below this cell in an example of how the colour format works and what they indicate.    Low |

## Important note: All materials calculated in above sheet, includes only imported materials

| Kev: | A1-3 | Caculation are based on Embodied Carbon Factors (ECF) to Extract & Manufacture the material Calculated as: Tonnes x ECF kg(CO2e/kg) = Embodied Carbon t(CO2e). Sourced istructE                                                                                                                                                                                             |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Α4   | Calculation based on kg of CO2e produced by Distance travelled in km, ECF based on: Tonnes x ECF kg(CO2e/kg) = Embodied Carbon t(CO2e). Distances referenced from IStructE: Locally sourced within 50km = 0.005kg(CO2e) / Nationally Sourced within 320km = 0.32kg(COe) / European sourced within 1500km = 0.16kg(CO2e): Sourced IstructE                                   |
| Ney. | A5w  | Calculation based on the Waste Factor (WF) of Materials. So brick has a waste factor of 20%, Steel 1% etc: Material WFx(Material ECF x Distance Travelled x Distance travelled forwaste material taken to lanfill (C2) x C02 used for processing disposal (C3-4) = A5w / Example, assumed waste of concrete is : 0.053 x (A1-3 x x A4 x C2 x C3-4) = A5w : Sourced IstructE |
|      | 5a   | Typical assumed costat stage A1-5 of build is 50% so: 700kg(CO2e) per £100,000 so: 0.7 x (cost of build +100,000) = Ans t(CO2e): Soruced IstructE                                                                                                                                                                                                                           |



